Sabtu, 27 Februari 2010

PANORAMA ANGKASA LEPAS vol. 27.2 II

Dawn's Endeavour
Credit & Copyright: Malcolm Park

Explanation: On February 21st, the Space Shuttle Endeavour and the International Space Station (ISS) flew through the sky near dawn over Whitby, Ontario, Canada. Along with star trails, both were captured in this single time exposure. Glinting in sunlight 350 kilometers above the Earth, Endeavour slightly preceeded the ISS arcing over the horizon. But the brighter trail and the brighter flare belongs to thespace station just visted by Endeavour. Near the completion of the STS-130 mission, hours later Endeavour made a night landing at Kennedy Space Center.

CREDIT TO http://apod.nasa.gov/

PANORAMA ANGKASA LEPAS vol. 27.2

Chasing Carina
Credit & Copyright: Dieter Willasch

Explanation: A jewel of the southern sky, the Great Carina Nebula, aka NGC 3372, spans over 300 light-years. Near the upper right of this expansive skyscape, it is much larger than the more northerlyOrion Nebula. In fact, the Carina Nebula is one of our galaxy's largest star-forming regions and home to young, extremely massive stars, including the still enigmatic variable Eta Carinae, a star with well over 100 times the mass of the Sun. Nebulae near the center of the 10 degree wide field include NGC 3576 and NGC 3603. Near center at the top of the frame is open star cluster NGC 3532, the Wishing Well Cluster. More compact, NGC 3766, the Pearl Cluster, can be spotted at the left. Anchoring the lower left of the cosmic canvas is another large star-forming region, IC 2948 with embedded star cluster IC 2944. That region is popularly known as the Running Chicken Nebula.

CREDIT TO http://apod.nasa.gov/

Khamis, 25 Februari 2010

PANORAMA ANGKASA LEPAS vol. 25.2

Edge-on Spiral Galaxy NGC 891
Credit & Copyright: Bob Franke

Explanation: This beautiful cosmic portrait features NGC 891. The spiral galaxy spans about 100 thousand light-years and is seen almost exactly edge-on from our perspective. In fact, about 30 million light-years distant in the constellation Andromeda, NGC 891 looks a lot like our Milky Way. At first glance, it has a flat, thin, galactic disk and a central bulge cut along the middle by regions of dark obscuring dust. Also apparent in NGC 891's ege-on presentation are filaments of dust that extend hundreds of light-years above and below the center line. The dust has likely been blown out of the disk by supernova explosions or intense star formation activity. Faint neighboring galaxies can also been seen near this galaxy's disk.

CREDIT TO http://apod.nasa.gov/

Selasa, 23 Februari 2010

PANORAMA ANGKASA LEPAS vol. 23.2

Exceptional Rocket Waves Destroy Sun Dog
Credit & Copyright: George C. Privon (U. Virginia)

Explanation: What created those rocket waves, and why did they destroy that sun dog? Close inspection of the above image shows not only a rocket rising near the center, but unusual air ripples around it and a colorful sundog to the far right. The rocket, carrying the Solar Dynamics Observatory (SDO), lifted off two weeks ago from Cape Canaveral, Florida, USA into a cold blue sky. The SDO is designed to observe the Sun continuously over the next several years, exploring the Sun's atmosphere at high resolution and fast time scales. The air ripples -- seen about one minute after launch -- were unexpected, as was the sudden disappearance of the sundog after the ripples passed. Noticed and recorded by several onlookers, there has been much speculation about the origin of the ripples. An ongoing discussion about them can be joined here in APOD's discussion board the Asterisk. A leading hypothesis holds that the ripples resulted from a sonic boom created as the rocket broke the sound barrier, which then jumbled a thin layer of ice crystals that were aligned to create the sundog. Lingering questions include why other rocket launches don't produce air ripples as noticeable, and why the ripples appeared more prominent above the rocket. If you know of images of any other aircraft or spacecraft that have produced similar air ripples, please post them to the discussion thread -- they may be help create a better understanding of the effect.

CREDIT TO http://apod.nasa.gov/

Isnin, 22 Februari 2010

PANORAMA ANGKASA LEPAS vol. 22.2

NGC 2440: Cocoon of a New White Dwarf
Credit: H. Bond (STScI), R. Ciardullo (PSU), WFPC2, HST, NASA

Explanation: Like a butterfly, a white dwarf star begins its life by casting off a cocoon that enclosed its former self. In this analogy, however, the Sun would be a caterpillar and the ejected shell of gas would become the prettiest of all! In the above cocoon, the planetary nebula designated NGC 2440, contains one of the hottest white dwarf stars known. The white dwarf can be seen as the bright dot near the photo's center. Our Sun will eventually become a white dwarf butterfly but not for another 5 billion years. The above false color image was post-processed by Forrest Hamilton.


CREDIT TO http://apod.nasa.gov/

Sabtu, 20 Februari 2010

PANORAMA ANGKASA LEPAS vol. 20.2 II

Geostationary Highway
Credit & Copyright: Babak Tafreshi (TWAN)

Explanation: Put a satellite in a circular orbit about 42,000 kilometers from the center of the Earth (36,000 kilometers or so above the surface) and it will orbit once in 24 hours. Because that matches Earth's rotation period, it is known as a geosynchronous orbit. If that orbit is also in the plane of the equator, the satellite will hang in the sky over a fixed location in a geostationary orbit. As predicted in the 1940s by futurist Arthur C. Clark, geostationary orbits are in common use for communication and weather satellites, a scenario now well-known to astroimagers. Deep images of the night sky made with telescopes that follow the stars can also pick up geostationary satellites glinting in sunlight still shining far above the Earth's surface. Because they all move with the Earth's rotation against the background of stars, the satellites leave trails that seem to follow a highway across the celestial landscape. For example, in this wide view of the nearly equatorial Orion region, individual frames were added to create a 10 minute long exposure. It shows Orion's belt stars and well-known nebulae along with many 2.5 degree long geostationary satellite trails. The frames are from an ingenious movie, featuring the geostationary satellite highway.


CREDIT TO http://apod.nasa.gov/